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The behaviour of a pair of corotating vortices in the wake of a flapped airfoil is
experimentally studied in a water towing tank. Reynolds numbers based on total
circulation of the vortices range from 1.0 × 104 to 6.4 × 104. Planar velocity vector
fields and their gradients are derived from PIV images using an adaptive Lagrangian
parcel tracking algorithm. Isovorticity surfaces are extracted from time series of
planar vorticity data. The behaviour of the vortices is tracked by using various
moments of both the probability density distribution and the spatial distribution of
their streamwise vorticity. All vortices show a Lamb–Oseen circulation distribution
when they are clearly identifiable. Further, vortices from the flapless wing exhibit
Lamb–Oseen velocity and vorticity distributions with slow growth. All corotating
vortex pairs are observed to merge at about 0.8 orbit periods. First-order statistics of
the flow field remain invariant during the merger. The higher-order moments of the
vorticity distribution show strong time dependence, which implies three-dimensionality
of the flow resulting from vortex stretching. The strengths of the individual vortices
before merger are constant, and the total circulation before and after merger remains
constant within the range of observations. The trajectory of the centre of vorticity
remains unaffected by the merger process. The merger is preceded by a splitting of
the weaker vortex into filaments which, depending on the relative strengths of the
vortices, can occur in the radial direction, the axial direction, or a combination of the
two. Mechanisms contributing to the merger dynamics are discussed.

1. Introduction
A counter-rotating vortex system is present in the wake of any finite lifting wing.

This vortex system poses a safety problem in air transport which manifests itself di-
rectly as aircraft–vortex encounters with a wide range of consequences, and indirectly
as one of the primary factors in scheduling take-offs and landings at airports. The
current approach to this problem consists of attempts to avoid the wake vortices in
air operations which is becoming increasingly difficult. An alternative approach is
either eliminating the vortex wake completely or mitigating the danger posed by it.
Both of these require an understanding of the basic dynamics of the wake vortex
system, which is currently inadequate.

Current experience is almost exclusively based on two-dimensional arguments and
limited to restricted experiments. The efforts hitherto have been cyclical with a flurry
of activity over a few years which wanes once the problem has been determined
unsolvable with the current level of understanding of the flow physics and the
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available technology. Some of the important gatherings dedicated to the topic include
the Symposium on Aircraft Wake Turbulence and its Detection (Olsen, Goldberg
& Rogers 1971), Symposium for Wake Vortex Minimization (Gessow 1976), FAA
International Wake Vortex Symposium (FAA 1991), NATO-AGARD Symposium on
Wakes from Lifting Vehicles (AGARD 1996), and a comprehensive Wake Vortex
Bibliography (Hallock 1991a, b, 1997). In addition, several technical programs have
been created to address this problem (Balser, McNary & Nagy 1974; Kopp 1994),
notably the Aircraft Vortex Spacing System (AVOSS) (Hinton 1996) which is currently
being examined for implementation. These still rely on accurate predictive capabilities
of vortex behaviour, which are limited at this time.

The formation of the vortex wake behind a finite wing has received specific
attention. The process was first conceptually proposed by Lanchester (1908) at the
turn of the century. The basic theory of vortex wake formation was not well codified
until the 1950s (Spreiter & Sacks 1951), however, and not until the 1970s did trailing
vortex stability and breakdown begin to receive adequate treatment (Crow 1970;
Maxworthy 1972; Hall 1972; Moore & Saffman 1973, 1975; Tsai & Widnall 1976). At
this stage, theory was well ahead of both numerical and experimental investigation, as
witnessed by the research at the time (Olsen et al . 1971; Gessow 1976). Twenty years
later, the latter elements have begun to reach the level of reliability and sophistication
of the former. On the numerical side, two-dimensional simulations have been the norm
due to their reduced computing costs. The obvious question arises whether these results
can be extrapolated to three dimensions (Spalart 1998). This question is slowly fading
as simulations become more and more robust and are able to handle more complex
geometry. Still, the accurate simulation of a full-scale aircraft wake at the required
Reynolds numbers is distant. Current simulations are essential in examining the
importance of three-dimensional effects on single or multiple periodic vortex systems,
though, such as short-wave or long-wave instabilities. On the experimental side, the
advent of non-intrusive field techniques has greatly improved the amount of data. The
main benefit is the ability to examine the instantaneous (i.e. unsteady) behaviour of
a vortex system (Jacob, Savaş & Liepmann 1997). In addition, traditional laboratory
and field-test techniques continue to make contributions. For example, recent hot-wire
probe measurements in a wind tunnel have shown that corotating vortices merge into a
single vortex with significantly different turbulence characteristics (Vogel, Devenport
& Zsoldos 1996). Full-scale tests have been conducted which have the benefit of
including all of the requisite physics, but whose benefits are often outweighed by
the cost of the experimental runs and the limited quality of the data (e.g. Garodz &
Clawson 1993).

Recent work has also shown that trailing vortices can be altered to some degree
by various means (Croom 1976; Greene 1986; Rossow et al . 1995; Jacob, Liepmann
& Savaş 1996; Crouch 1997), including methods which use merger for mitigation.
Whether the alterations can significantly impact a full-scale wake to the magnitude
required is still in question, though. More specifically, disagreement exists over the
details of the physics behind alleviation attempts, and even whether any alleviation
is at all possible. This is due in large part to the number of parameters in vortex
formation and evolution.

The goal of this study is to contribute to the understanding of the dynamics of
a corotating vortex pair in a vortex wake. The prevailing view is that a corotating
vortex pair in the wake of a flapped airfoil may be treated as a two-dimensional
system, which should not merge unless the vortex cores are sufficiently large, where
straining would result in merger (Spalart 1998). Laboratory experiments at sufficiently
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Figure 1. Sketch defining the vortex wake problem and the left-handed
x, y, z-coordinate system.

high Reynolds numbers have shown little interaction between such vortices, leading
to the belief that the vortices will retain their identities and will not merge for a
long time (de Bruin et al . 1996). However, in these experiments, the downstream
distances at which measurements are made are typically limited to a fraction of the
orbit time of the vortex system; hence, the measurements have not fully captured
the dynamics of the vortices. Studies beyond the near field of the wing have shown
significant interaction between the vortices of single or multiple vortex pairs (P. S.
Marcus & T. Matsushima 1995, personal communication; Vogel et al . 1996; Jacob et
al . 1997).

The flow considered here is the interaction of corotating vortices in the wake of
a finite lifting wing with flaps. The flow configuration and the reference system are
shown in figure 1. The wing has a span of b, a chord c, and an area A, with the
edges of a continuous flap at a distance of l away from the wing tips. It is at an
angle of attack of α and is moving at a velocity of U∞. A corotating vortex pair is
generated off each side of the wing with strength of ±Γt from the wing tips and ±Γf
from the flap tips. For high aspect ratio wings with small l/b, the corotating vortex
system displays internal behaviour independent of the vortex system shed off of the
other half of the wing. The internal dynamics of the corotating system lead to single
vortices of strength ±Γ which form the conventional counter-rotating vortex pair of
the far wake. The merger of the ±Γt and ±Γf vortices occurs at some downstream
distance ∆m = U∞tm, where tm is the time to the merger. By the merger time, the
counter-rotating vortex system descends a distance of δm where the ±Γ vortices are
separated by a distance β. The interesting flow details become detectable after about
1/4 orbit time, and the prominent dynamics are observed within one orbit time. The
events in the wake take place on the time scale of the orbiting period of the corotating
pair. This time scale dictates the vortex descent and downstream distance to merger.
The merger descent distance δm is found to be independent of the flow conditions
while ∆m is too long to be observed in a typical wind tunnel.

The experimental setup and the data processing are described first. Following that
is a qualitative description of sample flows, which is based on the vorticity fields. Next
is a detailed discussion of the sample flows with emphasis on structure, kinematics,
and dynamics of the vortices. Lastly, merger dynamics are discussed and the findings
of the paper are summarized.
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Figure 2. Wing geometry showing plan view, circular profile, and dimension definitions.
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Figure 3. Experimental setup showing tow tank, wing, camera, light sheet, and data acquisition
computer.

2. Experimental setup
2.1. Airfoil geometry

The airfoils are of a rectangular planform with a circular arc profile of 14 cm radius
and constructed of 1.1 mm thick stainless steel (figure 2). The curvature is intended
for improved wing performance at low Reynolds numbers. The airfoils have a span
of b = 30.5 cm and a chord length of c = 5.1 cm, resulting in an aspect ratio
of 6. Step changes in lift distribution are obtained with flap extensions beyond the
trailing edge. Two flap spans are used: 30% (l = 10.7 cm) and 67% (l = 5.0 cm). In
addition, measurements are made with an unflapped wing for comparison. The airfoil
is attached to a towing carriage by a strut mounted on the airfoil centreline. The
strut to the carriage is a thin flat plate with a chord length of 2.5 cm, a thickness of
3.2 mm, and faired leading and trailing edges. The angle of attack α of the airfoils is
varied from 0◦ to +8◦ in 2◦ increments.

2.2. Flow apparatus

The experiments were conducted in the University of California–Berkeley water
towing tank facility shown in figure 3. The tank is approximately 70 m long and
2.4 m across with a nominal depth of 1.7 m. The towing speed U∞ is variable from
10 to 160 cm s−1 at an accuracy of better than 1%. The tank has a viewing station
near the centre of the length of the tank consisting of a 3 m long window. The
water temperature is approximately 18 ◦C (kinematic viscosity ν = 0.01 cm2 s−1). A
5 mm thick light sheet from a 10 W CW laser is projected normal to the tow velocity
through the viewing window. The immediate vicinity of the light sheet is seeded with
40 µm silver-coated hollow glass spheres. Any motion of the water induced by the
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seeding mechanism is allowed to damp out before an experimental run takes place.
A camera is placed underwater at a 90◦ viewing angle to the light sheet and centred
at a distance of 9.7 m behind the sheet. The camera (Sony XC-7500) is a 30 Hz
progressive-scan analogue monochrome non-interlaced charge-coupled device (CCD)
with a 640×480 square pixel chip. A 75–200 mm zoom lens (Canon 1: 4.5 FD) is
attached to the camera. To increase the spatial resolution of the measurements, only
half of the wake of the airfoil is imaged. The imaged area is about 40×30 cm. A
mechanical shutter synchronized with the camera is placed in front of the laser to
reduce image streaking. The resulting images are stored in real time in memory on
a computer using an imaging board (Matrox Pulsar) and then written to disk. In an
experimental run, the wing starts its motion immediately in front of the camera. Data
acquisition starts as soon as the wing arrives at the laser sheet. The wing continues
its motion uninterrupted until the data acquisition is complete. Seven to ten seconds
of data are recorded during each experimental run. Data are taken at downstream
distances up to z/b = 52 (z/c = 314).

2.3. Data processing

A modified version of the Lagrangian parcel tracking (LPT) algorithm developed by
Sholl & Savaş (1997) is used for particle image velocimetry (PIV) processing. The
algorithm treats the seeding particles as markers of fluid parcels and tracks both their
translations and deformations. The velocity field needed to initialize the LPT process is
obtained from a conventional PIV algorithm which uses multiple passes, interrogation
window shifting, and adjustable interrogation window size. Both the LPT and PIV
algorithms employ a rigorous peak-detection scheme to determine velocity vectors,
and use the local velocity gradient tensor to identify spurious velocity vectors. The
LPT algorithm works well in the flow field of a vortex, which is characterized by
high deformations and where traditional PIV algorithms are plagued by biasing and
limited dynamic range. Finer resolution of the velocity vector field is obtained with
an adaptive LPT algorithm (aLPT). Based on the magnitude and the direction of
the expected velocity vector determined from a previous LPT pass, the size (small or
large), shape (square or rectangular), and orientation (horizontal or vertical rectangles)
of the interrogation window are adjusted to maximize correlation information and to
minimize calculation time. The output of the algorithm consists of the velocity vector
(u, v) and its gradient tensor

uij =

(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
(2.1)

at each point, from which the axial vorticity ω = (∂v/∂x−∂u/∂y) is determined in the
plane of measurement. The uij tensor is an intrinsic product of the algorithm and is
calculated spectrally. Post-processing is performed with Research Systems Interactive
Data Language (IDL).

Sample data are shown in figure 4. Figure 4(a) shows one frame of a pair of
images used in the aLPT processing. The streaklines make visible the tip and flap
vortices which have rotated about 180◦ from their initial orientation. The image
shows typical problems plaguing PIV algorithms such as uneven seeding density, local
saturation, local darkness, and excessive streaking. The aLPT algorithm is able to
derive velocity information from the images without difficulty. The velocity vector
field (u, v) and selected streamlines corresponding to the image in figure 4(a) are
shown in figure 4(b). The axial vorticity field ω(x, y) is shown in figure 4(c). The
(u, v) and ω arrays are 73 (vertical)× 53 (horizontal) in size. The overlap of the
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Figure 4 (a, b). For caption see facing page.
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Figure 4. Sample PIV image and aLPT results from flow 16 in table 1. (a) Photograph showing
vortex pair, streaks, and non-uniform seeding 5 s after the 30% flap wing passed by at U∞ = 160
cm/s. Note that the vortices have rotated about 180◦ from their initial orientation (see figure 7
below). (b) Cross-plane velocity vector plot from aLPT (73× 53) and the corresponding streamline
pattern. (c) Vorticity contours from aLPT: •, centres of vorticity for the flap and the tip vortices;
⊕, centre of vorticity of the vortex pair, and ×, common stagnation point of the pair.

corresponding correlation windows during the aLPT processing ranges from 0 to
50%. These streamlines are in the laboratory reference frame and are substantially
different from the streakline pattern seen in (a). The vectors in figure 4(b) indicate
three stagnation points, one corresponding to each of the vortices and one to the
centroid of vorticity. The stagnation points corresponding to the individual vortices
are at the ends of spiralling streamlines, and that corresponding to the combined
system is near the centroid of vorticity of the pair. The far-field streamline pattern
indicates a descending patch of vorticity into which the flow spirals. The stronger
vortex acts as an attractor of the streamlines of the whole system. In identifying
the locations of the individual vortices and the centroid, the vorticity field provides
the most rigorous information. The markers in figure 4(b) are determined from the
vorticity data in figure 4(c). In this particular calculation, the vortices are visually
bracketed in the largest non-overlapping rectangular regions, the edges of which are
in nominally zero-vorticity regions. The centre of the total vorticity distribution is
that of the two rectangular regions used for the individual vortices. In figure 4(c), the
marker identifying the centre of the tip vortex is nearly at the centre of the vorticity
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contour lines, which shows a compact vorticity distribution. The marker identifying
the flap vortex is substantially displaced from the peak vorticity. This is attributed to
the fact that the flap vortex is undergoing a splitting mechanism which precedes the
merger of these two vortices. This is due to the splitting of the vortex which spreads
vorticity over the ‘tail’ of the vortex. The centres of the vortices are displaced from
the two stagnation points due to the orbiting motion of the vortices. Similarly, the
centroid is at a different location from the common stagnation point in figure 4(b).

3. Discussion of results
3.1. General observations

The flows listed in table 1 form the basis of this paper. The wing planform, the towing
speed U∞, and the angle of attack α are the controlled parameters of the flows. The
measured parameters are the total circulation Γ = Γt+Γf , the circulation ratio Γf/Γt,
the counter-rotating vortex separation distance β, vortex size parameters σt and σf
(defined below), the merger time tm, and the descent distance to merger δm. The chord
Reynolds number Rec = cU∞/ν ranges from 4.1×104 and 8.2×104 and the circulation
Reynolds number ReΓ = Γ/ν from 1.0×104 to 6.4×104. Flow measurements are first
presented as isovorticity surfaces, abbreviated as isovor(s) hereafter. These surfaces
are extracted from three-dimensional data sets of the axial vorticity component, which
are constructed from time series of planar data. A complete set of the isovors are
presented in Chen, Jacob & Savaş (1997). The isovors depict the behaviour of a single
vortex in figure 5, the rapid merger of two close vortices at low Reynolds numbers in
figure 6, and the merger of widely separated vortices with various circulation ratios
in figures 7 and 8. The multi-dimensional data alleviate uncertainties due to the
wandering of vortices when single-point measurements are made. Even though the
effect of wandering on average quantities may be corrected by deconvolution (Baker
et al . 1974; Devenport et al . 1996), the details of the flows are lost.

Several interesting observations of vortex characteristics, their interaction, and
merger can be made from the isovors. First, the events in the figures are at sufficiently
high Reynolds numbers that the vortex dynamics are inertia-dominated. Vortex pairs
initially have separations of either 5 cm or 10 cm and merge in a distance on the
order of 10 m. The elapsed time t is converted to distance through the towing velocity
as tU∞. An experimental run typically lasts 10 s, during which time the viscous
diffusion length is (νt)1/2 ∼ 3 mm (∼ 0.01b). The spatial resolution of aLPT in the
figures is about 3 mm. Hence, the resolved length scale cannot differentiate diffusive
events on the basis of individual measurements. Averaged measurements, however,
can yield clues about viscous diffusion as discussed below in conjunction with the
growth of vortices. A guideline in identifying flow features is to confirm that they
are not confined to a single plane of data, but can be traced in time over many
frames. Figures 7 and 8 show consistent details at low vorticity levels which persist
throughout the flows. In addition, the flow images that are used in aLPT processing
are also used as flow visualization pictures in interpreting the results during the data
analysis (see figure 4(a)), which proved to be of extreme value in confirming and
interpreting the features revealed by the isovors.

3.2. Flow details

Figure 5 shows isovors in the wake of the unflapped wing at α = 4◦ and U∞ = 160 cm
s−1 (flow 4; Rec = 8.2× 104, ReΓ = 2.4× 104). The vortex sheet off the wing rapidly
rolls up into a single vortex which moves inboard and descends under the induced
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flow % U∞ α Γ ReΓ β σt σf tm δm
# flap (cm s−1) (deg.) (cm2 s−1) (Γ/ν) Γf/Γt (cm) (cm) (cm) (s) (cm)

1 0 80 8 170 17 000 — 24.6 1.9 — — —
2 0 160 0 100 10 000 — 35.6 1.8 — — —
3 0 160 2 150 15 000 — 20.7 1.9 — — —
4 0 160 4 240 24 000 — 28.2 2.1 — — —
5 0 160 6 360 36 000 — 26.2 2.3 — — —
6 0 160 8 340 34 000 — 26.7 2.5 — — —
7 30 80 0 170 17 000 1.30 28.5 1.8 2.0 27.0 26.7
8 30 80 4 200 20 000 0.75 27.2 2.0 1.9 18.0 22.9
9 30 80 4 260 26 000 0.78 24.1 1.9 2.3 14.7 24.4

10 30 80 6 280 28 000 0.47 25.6 2.1 1.8 19.0 32.9
11 30 80 8 250 25 000 0.51 19.6 1.8 2.1 17.0 35.4
12 30 160 0 300 30 000 1.02 22.1 2.3 2.0 12.0 24.0
13 30 160 2 360 36 000 1.01 22.4 2.0 2.0 13.0 33.7
14 30 160 4 420 42 000 0.46 24.4 2.0 1.6 10.0 27.9
∗15 30 160 4 480 48 000 0.57 26 2.8 2.1 7.0 22
16 30 160 4 540 54 000 0.61 24.6 2.5 2.7 7.7 28.0
17 30 160 4 430 43 000 0.50 23.7 2.4 2.1 8.5 23.6
18 30 160 4 550 55 000 0.58 23.2 2.5 2.2 8.7 32.8
19 30 160 6 600 60 000 0.44 24.2 2.5 2.5 6.7 26.1
20 30 160 8 450 45 000 0.46 25.5 2.1 1.9 6.0 16.1
21 30 160 8 500 50 000 0.40 18.2 2.1 1.5 6.0 23.5
22 30 160 8 520 52 000 0.32 20.0 2.1 1.9 6.0 22.2
23 30 160 8 500 50 000 0.47 24.4 2.9 2.7 6.4 22.1
24 67 80 0 150 15 000 0.95 21.0 1.1 1.2 4.9 6.6
25 67 80 2 190 19 000 0.77 26.7 1.0 1.2 4.5 6.2
26 67 80 4 240 24 000 0.67 26.0 1.0 1.2 3.3 5.2
27 67 80 4 260 26 000 0.67 25.4 1.2 1.3 2.6 4.3
28 67 80 8 290 29 000 0.70 23.0 1.2 0.9 2.1 4.5
29 67 80 8 290 29 000 0.65 19.3 1.3 0.8 2.4 6.2
30 67 160 0 350 35 000 1.20 22.8 1.1 1.2 1.7 4.4
31 67 160 0 350 35 000 1.30 23.2 1.2 1.3 2.0 5.1
32 67 160 2 480 48 000 1.30 21.6 1.3 1.3 1.5 5.3
33 67 160 4 540 54 000 0.65 21.7 1.6 1.1 1.6 6.2
34 67 160 4 540 54 000 0.73 23.2 1.5 1.2 1.3 4.7
35 67 160 4 540 54 000 0.85 22.1 1.5 1.4 1.2 4.7
36 67 160 8 620 62 000 0.40 20.5 1.9† — 0.9 4.4
37 67 160 8 620 62 000 0.49 21.4 2.0† — 1.2 5.6
38 67 160 8 605 60 500 0.40 21.8 2.0† — 1.3 5.7
39 67 160 8 640 64 000 0.40 21.0 2.1† — 1.1 5.4

∗Anomalous flow. † Merged vortex size.

Table 1. Schedule of experiments and some measured quantities.

flow field of its companion vortex off the other end of the wing. The vortex assumes a
circular shape rapidly after roll up and preserves this shape during the measurement
period. All surface levels show similar behaviour: a coherent vortex which descends
uneventfully. The vortex in figure 5 shows little growth except when very close to
the wing. The growth in size is especially evident for the higher value isovors and is
confined to about z/b < 5 (z/c < 30). This growth is partially due to the roll-up of the
vortex sheet and is in good agreement with predictions of roll-up completion distance
(Spreiter & Sacks 1951; Crow 1970; Saffman 1992). No obvious signs of instabilities
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Figure 5. Flow 4. Isovors showing the behaviour of the core and peripheral vorticity distribution
of a single descending vortex. Wing without flap at α = 4◦ angle of attack and U∞ = 160 cm/s
towing speed. (a) ω = 12.0 s−1, (b) ω = 9.0 s−1, (c) ω = 6.0 s−1, and (d) ω = 3.0 s−1.

are apparent, though the sampling rate precludes the possibility of observing short-
wave instabilities. Some of the details on the surface on the isovors are due to the
inherent noise resulting from the data analysis; some may be indicative of instabilities
or stretching of the vortex.

Figure 6 shows isovors in the wake of the wing with a 67% flap at α = 0◦ and
U∞ = 80 cm s−1 (flow 24; Rec = 4.1 × 104, ReΓ = 1.8 × 104). These low-speed data
are presented to highlight the vortex merger which would have occurred sooner at
higher angles of attack and higher towing speeds. In addition, the figure shows a
vortex pair with one of the lowest ReΓ where the viscous effects are expected to be
at their highest. Initially, the tip vortex moves partially up out of view while the flap
vortex is descending (also in figures 7 and 8 below). After the tip vortex comes into
view, the orbiting motion of the pair is clearly observable. The individual vortices
and the merged vortex in this flow have much smaller circulations than the vortex in
figure 5, as is clear from the smaller cross-sections of the same level of the isovors
in figure 6. The cores remain separate for a long period of time. The pair orbit
around each other as they descend, and early signs of interaction between them are
apparent. The tip vortex dominates the flow, while the flap vortex shrinks and loses
its identity in the flow field of the stronger tip vortex. Flutes develop on the weaker
flap vortex. The merger appears to have occurred by the time the vortices complete
one orbit. After the merger, the core of the system straightens immediately (figure 6c)
and proceeds to descend much like the single vortex in figure 5. Again, as remarked
in the discussion of figure 5, the merged vortex does not show any significant growth.
Similar behaviour is observed in the final vortex when the merger occurs close to
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Figure 6. Flow 24. Isovors showing the behaviour of the core and peripheral vorticity distribution
of a corotating vortex pair at small separation and low speed. 67% flap wing at α = 0◦ and U∞ = 80
cm/s towing speed. (a) ω = 15.0 s−1, (b) ω = 12 s−1, (c) ω = 9.0 s−1, and (d) ω = 6.0 s−1.

the wing at higher angles of attack (flows 24–39, table 1). Both vortices show signs
of undulations on their surfaces. Further, the vortices, especially the flap vortex, are
clearly unable to maintain a circular shape. These may be indicators of long-wave
vortex instabilities, core oscillations, and vortex stretching.

Figure 7 shows isovors in the wake of the wing with a 30% flap at α = 4◦ and
U∞ = 160 cm s−1 (flow 16, Rec = 8.2 × 104). The Reynolds number for the tip
vortex is ReΓ,t = 3.0× 104 and for the flap vortex ReΓ,f = 2.5× 104. Flow separation
over the centre portion of the wing causes loss of lift, thereby weakening the flap
vortex. The tip vortex is now the dominant one. The vortices merge within the
view, and the merger is completed within one orbit time as observed in figure 6. In
contrast, however, the vortices here are at a Reynolds number nearly an order of
magnitude higher. In addition, the merger is clearly an inviscid process as evidenced
by the lack of any smooth ‘bridges’ between the vortices at vorticity levels above
the background noise. The weaker flap vortex experiences an instability mechanism
which splits it into streamwise filaments. This splitting seems to occur in the axial
direction for this flow. Of these filaments, some merge with the dominant tip vortex
right away, some continue orbiting and merge at a later time, and yet others shrink
and redistribute their vorticity around the core. The weaker flap vortex follows a helix
with a higher pitch angle than that followed by the stronger tip vortex. After the
merger of the two vortices, the trajectory of the core of the system becomes straight
almost instantaneously.
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Figure 7. Flow 16. Isovors showing the behaviour of the core and peripheral vorticity distribution
of a corotating vortex pair at large separation and moderate angle of attack. 30% flap wing at
α = 4◦ and U∞ = 160 cm/s towing speed. (a) ω = 6.0 s−1, (b) ω = 4.5 s−1, (c) ω = 3.0 s−1, and (d)
ω = 1.5 s−1.

Figure 8 shows isovors in the wake of the wing with a 30% flap at α = 8◦ and
U∞ = 160 cm s−1 (flow 23; Rec = 8.2× 104). The Reynolds number for the tip vortex
is ReΓ,t = 3.3 × 104 and for the flap vortex ReΓ,f = 2.2 × 104. The figure shows a
flow with a fairly high Reynolds number. Due to the higher angle of attack, strong
separation has occurred that substantially weakens the flap vortex, which is much
weaker than the tip vortex. Therefore, the interaction here is between two disparate
vortices at a high circulation Reynolds number, which brings additional interesting
features into the interaction picture. The flap vortex orbits on a large circle, while
the tip vortex follows a smaller orbit. The merger seems to occur sooner and is
again marked by a sudden transition of the core trajectory from a helix to a straight
line. A more interesting observation is, however, the formation of the fine filament
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Figure 8. Flow 23. Isovors showing the behaviour of the core and peripheral vorticity distribution
of a corotating vortex pair at large separation and high angle of attack. 30% flap wing at α = 8◦
and U∞ = 160 cm/s towing speed. (a) ω = 6.0 s−1, (b) ω = 4.5 s−1, (c) ω = 3.0 s−1, and (d)
ω = 1.5 s−1.

structure of the flap vortex and the manner in which this occurs. First the flap vortex
destabilizes and splits radially. The weaker filaments hurled into the orbit of the
tip vortex start circling on lower pitch trajectories as they shrink and redistribute
vorticity around the perimeter. The stronger inner filaments, on the other hand, seem
to merge with the vortex core rapidly. Signs of instabilities are apparent on the cores,
especially on the flap vortex.

3.3. Summary of flows

The flows presented in figures 5–8 suggest that the dynamics of the corotating vortices
in the wake depend strongly on their strengths, separation, and core sizes. The details
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Figure 9. Dimensional merger time tm as a function of the measured total circulation Γ : ◦ 30%
flap, observed; •, 30% flap, estimated; �, 67% flap. The lines are tm = Cmτ for each wing from
figure 18(a).

of the lift distribution on the airfoil simply determine the circulations Γf and Γt.
If, for example, the flow separates on the wing, the lift distribution, and the vortex
strength ratio Γf/Γt change. At low chord Reynolds numbers Rec, the flow separates
at moderate angles of attack; hence, the lift distribution changes. The flow at low α
is attached, and the flap vortex is stronger than the tip vortex. At high α the flow
over the wing separates, resulting in a flap vortex which is weaker than the tip vortex
(figure 8). The dynamics are determined by the ratio of their strengths. As long as the
strength ratio is ascertained, the generation mechanism is not central to the discussion
here.

Vortices in the wake exhibit little growth. The isovors in figure 5 of the vortex
behind the simple wing show little growth during the run of the experiment. Some
growth, however, appears to occur near the wing (z/b < 5). The single vortex following
merger of two vortices shows a similar behaviour. This is partly visible in figure 6
where the tip and the flap vortices merge late in the flow. The behaviour is more
clearly observed when the merger occurs closer to the wing at higher angles of attack.
This behaviour is also observed behind the 30% flap airfoil. In general, the isovors
show little growth beyond the immediate vicinity of the wing or the merger region.
This poses a problem in that a vortex in a real fluid must grow. Experiments suggest
that the vortex growth even at high Reynolds numbers shows a behaviour reminiscent
of viscous diffusion (Jacob et al . 1997). Vortex growth is discussed further in the next
section by examining the size of a vortex using a definition based on the velocity
profile.

As seen in figures 7 and 8, when two corotating vortices are present, each vortex
exhibits stretching as they coil around each other. Numerous ridges or flutes are
present along the isovors. These ridges are repeatable and are not an artifact of the
data processing. Another interesting observation is the breakup of the weaker vortex
into filaments as it wraps around the stronger vortex.

When the vortices are shed from the airfoil, they are distinct. However, as the
downstream distance increases, the vortices lose their identity and merge. In figure
7, merger occurs at z/b = 40 (z/c = 240) and in figure 8 at z/b = 34 (z/c = 200).
The merger appears to be catastrophic. The wake continues to exhibit interesting
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behaviour after the merger, namely the vortex system appears to forget the history
of its formation. The emerging vortex becomes a straight rod and shows no obvious
signs of its previous helical nature.

The dominant feature of the flow is the merger of the corotating vortices within
one orbit period. Table 1 shows that the merger time tm is shorter for the 67% flap
airfoil than it is for the 30% flap airfoil. Another observation is that the merger time
decreases with increasing towing speed and angle of attack, both of which increase
Γ . Following this observation, tm is plotted against Γ in figure 9, both measured
quantities. The merger occurs much sooner for the smaller l; tm decreases with
increasing Γ . The scatter in the plot is a reflection of the uncertainties inherent in
determining Γ and a somewhat subjective method of determining the merger time tm.
Data points for each wing suggest inverse power law fits that may be made congruent
with a suitable scaling. The curves in the figures are ∼ 1/Γ which describe the trend
well. The curves suggest the possibility of a rational scaling of the data which is
presented below.

4. Analysis of results
4.1. Vortex characterization

Several integral quantities are calculated from the data and used in the discussion
below. These quantities include the vorticity distribution and its first four moments,
the centroid of vorticity, the vortex descent velocity, the kinetic energy, and the tensor
of the vorticity distribution. The probability density function p(ω, t) is calculated for
each flow as

p(ω, t) =
1

A

∫
A

〈
dA | ω 6 ω′ < ω + dω

〉
, (4.1)

where dω is the bin size. During this calculation, the 73× 53 domain (e.g. figure 4b, c)
is cropped to 67 × 47 to remove spurious data. The bin size dω must be chosen on
the order of or finer than the resolution of the ω calculations in aLPT to obtain
statistics that are insensitive to data processing parameters. In these experiments, this
corresponds to a number of vorticity bins on the order of a few hundred. The number
of bins used here is 1000.

Vorticity behaves differently in two and three dimensions. The vortex stretching
term ω · ∇u in the vector vorticity equation for incompressible flow allows for both
vortex stretching and tilting in three dimensions, which can either intensify or weaken
vorticity. Probability distribution functions of the components of the vorticity can
shift to arbitrarily high values. The viscous diffusion term always smears the vorticity
distribution, and hence arrests infinite intensification of vorticity. When the flow is
confined to a plane in two dimensions, the vorticity is reduced to a single component
ω which behaves as a passive scalar and intensification is no longer possible. Hence,
in a two-dimensional viscous flow, the probability density function of vorticity p(ω, t)
can shift only toward lower vorticity values. If the flow is also inviscid, then vorticity is
convected with fluid elements and p(ω, t) remains unaltered. The behaviour of p(ω, t),
therefore, can be taken as an indicator of two-dimensionality of the flow if it does
not change significantly. On the other hand, substantial changes in p(ω, t) indicate
three-dimensionality of the flow if viscous effects are negligible. In particular, p(ω, t)
can be taken as a direct indicator of vortex stretching if a shift toward higher values
of ω is observed. This is true even if the flow is viscous, since viscosity can only diffuse
vorticity and shift p(ω) to lower values of ω, narrowing the distribution of p(ω). For
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example, diffusing vorticity tends to homogenize ω, and hence, p(ω) → δ(ω − ω0),
where ω0 is a constant. In addition, vortex stretching is the only mechanism of
amplifying vorticity and is a three-dimensional event.

Moments of the axial vorticity distribution ω(x, y, t) are calculated as

〈ωn(t)〉 =

∫
ωnp(ω, t) dω. (4.2)

The strength of the vortex Γ (t) is determined as

Γ (t) = 〈ω(t)〉A. (4.3)

As a consequence of Helmholtz’s laws, the statistics of the vorticity distribution of a
patch of fluid particles remain invariant in an inviscid two-dimensional flow. If the
boundaries of the domain of integration in equation (4.2) is chosen in regions where
ω is negligible, then

d〈ωn(t)〉
dt

= 0, (4.4)

even if the boundaries are fixed. Equation (4.4) is used below in the discussion of the
behaviour of the corotating vortex pairs. The first four moments are, respectively, the
mean, variance, skewness, and flatness of the distribution and are calculated for all
the flows. These moments are scaled as 〈ωn(t)〉/ωn

ave where ωave is the average vorticity
in a suitably cropped region of the three-dimensional data ω(x, y, t).

The centre of a vortex X c(t) = (Xc, Yc) is determined by calculating its centroid
using the vorticity field (e.g. figure 4c) as

X c(t) =
1

Γ (t)

∫
x ω(x, t) dA. (4.5)

The centroid is taken as a marker of the vortex trajectory. The vortex descent velocity
U c(t) = (Uc, Vc) is calculated by weighting the velocity field with the vorticity field as
in Bilanin, Teske & Williamson (1977) and Marcus (1990):

U (t)c =
1

Γ (t)

∫
u(x, t) ω(x, t) dA. (4.6)

The descent velocity of the centroid may also be interpreted as the velocity of the
vorticity as a passive scalar if the flow can be considered two-dimensional. In that
case, even if part of the vortex has already left the view of the camera, as is the case in
figure 8, the calculation still correctly yields the velocity of the vortex if the vorticity
distribution remains coherent. The asymptotic behaviour of U c(t) is uniform due to
the induced velocity of the counter-rotating vortex system. This limiting behaviour is
used to infer the average counter-rotating vortex pair separation distance β

β =
1

2π

〈
Γ (t)

〉〈|U c(t)|〉 . (4.7)

The above calculation presumes that the vortex pair may be approximated as a pair
of line vortices. This approximation is deficient, though, on two counts: (i) the vortices
are not infinitely long and (ii) they do not represent idealized line vortices which have
infinite kinetic energy. The inaccuracy incurred due to this approximation, however,
is comparable to experimental uncertainty in determining β. The velocity field of the
vortex uΓ (r, θ, t) = (ur, uθ) with respect to its centroid is defined as

uΓ (r, t) = (ur, uθ) = u(x− X c, t)−U c(t), (4.8)
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where r = x − X c. In equation (4.8), ur and uθ are the radial and azimuthal velocity
components as measured in a cylindrical coordinate system attached to the centre of
vorticity of the system.

The dimensionless kinetic energyK(t) of the vortex field is calculated from uΓ (r, t):

K(t) =
1

Γ 2(t)

∫
1
2

∣∣uΓ (r, t)
∣∣2dA. (4.9)

The scaling is based on the fact that the induced downwash of the lifting vortex system
on the wing transfers energy to the incoming fluid. This energy eventually ends up as
the kinetic energy of the trailing vortex system which is used by Prandtl to estimate
the vortex core size (see, for example, Saffman 1992). The same scaling can be deduced
by simply using the facts that the induced drag of a finite wing is proportional to the
square of the lift, and that the induced drag force essentially generates the work which
is expended in the wake inviscidly. Thus, based on this argument, the dimensionless
kinetic energy is expected to remain constant. This constant is π/8 for an isolated
vortex (Saffman 1992, p. 103).

The moment-of-inertia tensor Iij of the vorticity distribution is calculated with
respect to the centroid as

Iij(t) =
1

Γ (t)

∫
(xi −Xc,i)(xj −Xc,j)ω(x, t)dA. (4.10)

This tensor is used to identify salient features of the vortex dynamics, such as the
vortex size and core oscillations. In particular, Iij(t) is used to help identify the merger
point of a pair of corotating vortices. The calculations of the tensor Iij must be done
with care, since even small values of ω at large distances from the centroid contribute
substantially and may even eclipse the contribution from the centre of the vorticity.

4.2. Vortex structure

Figure 10 shows the structural data of a single vortex of flow 4 at t = 6 s (figure 5).
The Reynolds number Γ/ν is about 2.4 × 104. The data are presented with respect
to the centroid of the vortex, the location and velocity of which are determined from
equations (4.5) and (4.6). Figure 10(a) shows a scatter plot of the azimuthal velocity
distribution uθ(r), where a linear inner core with a smooth transition to a potential
vortex field is implied. The scatter increases at farther distances from the vortex core.
The peak velocities are observed around r/b ≈ 0.1. The figure is similar to figure
4(b) of Devenport et al . (1996) which is constructed from pointwise measurements
and corrected for vortex wandering. The corresponding plot for vorticity distribution
ω(r) is shown in figure 10(b) which is determined intrinsically by the velocity gradient
tensor output of aLPT in equation (2.1). The vorticity is highest at the centre. It falls
off rapidly and almost vanishes by r/b ≈ 0.12. This implies that the vorticity is very
compact and that the velocity spread in figure 10(a) at large distances from the core
is due to irrotational motion of the flow field. The amplitude of the scatter at large
r in figure 10(a) and 10(b) is indicative of the uncertainties in the measurements,
while the scatter at the core of the vortex is a measure of the deviations from an
axisymmetric state. This deviation will be more clearly observed in the structure of
vortices prior to merger. The total circulation as a function of the radial distance
from the centre of the vortex is calculated as Γ (r) =

∫
ω(r)dA and is shown in figure

10(c). In this calculation, the area A(r) is taken as a disk of radius r centred at
X c. Γ (r) monotonically approaches its asymptotic value of Γo ≈ 240 cm2 s−1 with
no overshoot. The same qualitative behaviour of Γ (r) is observed after merger of
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Figure 10. The structure of a single vortex, flow 4 at t = 6 s: (a) azimuthal velocity uθ , (b) axial
vorticity ω, and (c) circulation Γ as functions of the radial distance from the centre of a single
vortex. The solid curve in (a) is uθ = Γ (r)/2πr where Γ (r) is from (c). The dotted curve in (a) is
uθ = Γo/2πr where Γo ≈ 240 cm2 s−1 is the average of the last quarter of Γ (r) in (c). The solid curve
in (b) is ω(r) = (dΓ/dr)/2πr calculated from the curve in (c) after some smoothing. The dashed

lines in all figures correspond to a Lamb–Oseen vortex Γ (r) = Γo(1 − e−r2/σ2
) with σ = 0.073b.

Symbol ◦ marks σ and • the point of maximum uθ at r = 1.121σ (r = 0.082b).

the vortices in flow 39 which has the highest Reynolds number, about 6.4 × 104. A
turbulent vortex, which is expected to occur at high Reynolds numbers, is thought
to exhibit an overshoot of Γ (r) (Govindaraju & Saffman 1971). The solid curve in
figure 10(a) is uθ = Γ (r)/2πr where Γ (r) is taken from figure 10(c). The asymptotic
dotted curve in figure 10(a) is uθ = Γo/2πr and describes well the far-field velocity of
the vortex. The solid curve in figure 10(b) is derived from the the Γ (r) data in figure
10(c) as ω(r) = (1/2πr)(dΓ/dr). It is intended as a smooth curve fit to the data. The
curve describes the far field well. The behaviour at the centre is perhaps an artifact
of the measurement, for such details could not have survived this long in the flow.
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Figure 11. The structure of a vortex pair before merger, flow 16 at t = 5 s: left – tip vortex and
right – flap vortex. The figure corresponds to the sample in figure 4. Symbols are the same as those
in figure 10. (a),(d) azimuthal velocity uθ(r), (b), (e) vorticity ω(r), and (c), (f) circulation Γ (r).

Nevertheless, a core with almost uniform vorticity, hence near solid body rotation, is
suggested in the figure.

The dashed curves in figure 10 represent a Lamb–Oseen vortex (Lamb 1932)

Γ (r) = Γo
(
1− e−r

2/σ2)
. (4.11)

Its corresponding vorticity field is ω(r) = (Γo/πσ
2)e−r2/σ2

and azimuthal velocity field

is uθ = (Γo/2πr)(1 − e−r2/σ2

). The parameters (Γo, σ) = (238 cm2 s−1, 0.073b) are
determined from a least-squares curve fit to the data of figure 10(c). The circulation
plot Γ (r) is chosen as the starting point of curve fitting to the data, since it is an
integral quantity that requires the minimum number of parameters. The parameter σ
as well as the point of maximum azimuthal velocity rm = 1.121σ (rm = 0.082b) are
marked in figure 10. This rm may also be used as a measure of the vortex core size,
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which is smaller than rm = 0.11b predicted by Prandtl’s arguments of conservation of
kinetic energy (Saffman 1992). Despite the scatter in the data, this curve fit describes
the general features of the vortex well. It overpredicts the vorticity at the core and
the edges of the vortex and underpredicts in between. Nevertheless, both the curve fit
in the figure and animation of the flows in table 1 indicate that the vortices remain
compact and show little signs of growth. The values of σ/b for the duration of flow 4
hover around 0.07 with less than 4% growth. Similar growth trends are observable on
isovors of all flows. This slow growth rate is reminiscent of slow viscous growth ∼ t1/2
as suggested by Moore & Saffman (1973), whose conclusion is further corroborated
by Zeman (1995) and Jacob et al . (1997).

Figure 11 shows the structural data for the individual vortices of a corotating pair
for flow 16 in table 1. The vortices are distinct at t = 5 s and permit individual
analysis. The corresponding image, velocity field, and vorticity contours are shown
in figure 4. In the figure, each vortex of the pair is treated singly as in figure 10. In
contrast to the single vortex in figure 10, the plots of the azimuthal velocity show wide
scatter at large distances from the centre of the vortices, which are marked in figure
4. This scatter is the result of the distorted shapes of the vortices, resulting from their
interaction. The vorticity scatter plots show similar differences, but closer to the core
where the scatter is wider than in figure 10(b) for a single wake vortex. In particular,
the flap vortex has a concentration of points away from the centre which is due to the
splitting visible both in the vorticity contour plot in figure 4(c) and the isovors in figure
7. These details are amplified further as the vortex pair undergoes severe structural
changes ending in merger. The weaker flap vortex is distorted and eventually split.
Therefore, a simple structural description of the vortices is inadequate. Nevertheless,
figure 11 treats the vortices as axisymmetric to present features that may be compared
to those in figure 10 for a single vortex. Interestingly, the circulation Γ (r), an integral
descriptor of the vortices, shows almost perfect Lamb–Oseen circulation distribution.
The circulation profiles Γ (r) for both vortices are shown in figure 11, along with the
Lamb–Oseen vortex fit of equation (4.11). The curve fit parameters (Γo, σ) for the tip
and the flap vortices are (325 cm2 s−1, 0.084b) and (197 cm2 s−1, 0.097b), respectively.
The curve fits are remarkably close to the data. The corresponding velocity and
vorticity profiles describe the average trends of the scatter plots well. Figures 10 and
11 indicate that the vortices tend to preserve a Lamb–Oseen structure with little or
no appreciable growth.

The scheme of fitting the Lamb–Oseen structure to the average circulation distri-
bution of a vortex is used to estimate the size of both the tip and the flap vortices, σt
and σf , given in table 1. These estimates are based upon the structure of the vortices
at early stages of the flows and may be used to ascertain the relative separation
between them. The uncertainty is less that 10%. The data in the table suggest σ ∼ 2
cm as a global measure of the vortex wake for the experiments here. This implies that
rm/b ∼ 0.07, hence 0.1b may be taken as a measure of the vortex size here. Given
that the vortex size behind a wing is determined by the spanwise lift distribution,
0.1b may be used beyond the experiments discussed here for comparison purposes.
The observations suggest that these conclusions can be extended to the vortices of
corotating pairs even though they are no longer axisymmetric. For stability analysis,
however, fine details of the vortex structure must be considered.

4.3. Onset of three-dimensionality and merger

Figures 12–15 show the quantitative behaviour of the flows in figures 5–8 using the
measures defined in equations (4.1)–(4.10). These include the vorticity density function
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Figure 12. Flow 4 vortex characteristics. (a) Vorticity probability density function p(ω, t), the
vertical dashed line marks the average vorticity ωave in measurement domain (x, y, t). (b) Moments
of vorticity distribution 〈ωn(t)〉 (n = 1, 2, 3, 4). (c) Position Xc(t) and velocity U c(t) of centroid of
the vorticity distribution. (d) Kinetic energy K(t). (e) Vorticity distribution tensor Iij(t).

and its moments, the position and the velocity of centre of vorticity, the kinetic energy,
and the vorticity distribution tensor for each flow.

The flow in figure 5 (flow 4) approximates the two-dimensional flow field of a
single vortex with little growth. The p.d.f. p(ω, t) of vorticity is shown in figure 12(a)
and its first four moments in figure 12(b). The p.d.f. does not significantly change
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Figure 13. Flow 24 vortex characteristics. (a) Vorticity probability density function p(ω, t). (b)
Moments of vorticity distribution 〈ωn(t)〉 (n = 1, 2, 3, 4). (c) Position Xc(t) and velocity U c(t) of
centroid of the vorticity distribution. (d) Kinetic energy K(t). (e) Vorticity distribution tensor Iij(t).

during the evolution of the flow. The first moment of the p.d.f. 〈ω(t)〉 indicates that
the total circulation of the vortex is nearly constant. The global average vorticity
ωave is marked as a vertical dashed line in figure 12(a). The second moment is also
nearly constant until later in the flow. The third and fourth moments, however,
show substantial activity, which points to the three-dimensional behaviour of even
the simplest of the flows. The isovors in figure 5 suggest that short-wave instabilities
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might exist in the vortex. No long-wave instabilities are apparent in the figure. The
centroid of vorticity in figure 12(c) descends at a nearly constant velocity as expected
of a pair of counter-rotating line vortices. After a period of increase, the kinetic
energy of the vortex becomes constant at later times. The kinetic energy is infinite for
a potential vortex. For the vortex of a rolled up sheet, however, it tends to a constant
value, and the data in the figure support that trend. The domain of measurement
is too small to capture all significant contributions to the energy integral, however,
since figure 10 clearly indicate that the vortex possesses substantial kinetic energy at
large distances. The vorticity inertia tensor Iij(t) in figure 12(e) shows fluctuations
that are comparable in frequency to those seen in the higher moments of p(ω, t) in
figure 10(b). The general trend of Iij shows a slow growth.

The characteristics of flow 24 are shown in figure 13. In contrast to flow 4 in figure
12, the higher-order vorticity moment shows large fluctuations in figure 13(b). This is
the clearest indication of the three-dimensionality of the vortex pair interaction. The
sharp transition around t = 4.5 s nearly coincides with the beginning of merger of
the isovors in figure 6. The merger time tm = 4.9 s in table 1 nearly coincides with
the minimum of the higher vorticity moments. The first moment of the p.d.f. remains
nearly constant during the measurement period. Higher-order moments show some
signs of oscillation before the merger. After the merger, however, they subside. A
noteworthy observation in figure 13(b) is that the higher-order moments of vorticity
decrease during and after the merger. This observation is discussed later. The motion
of the centroid of the pair, however, seems to be unaffected by the details of the
motion, i.e. it behaves as if it were a single vortex. The kinetic energy trend is similar
to that in flow 4 and shows no indications of the merger. The inertia tensor Iij shows,
in addition to high-frequency oscillations, a one-cycle oscillation that ends when the
merger is complete.

Flow 16 in figure 7 shows the vortex interaction at moderate Reynolds numbers.
It is one of the most illustrative flows whose quantitative characteristics are shown
in figure 14. The p.d.f. in figure 14(a) shows accentuated details. The low end of the
p.d.f. remains unchanged, while the upper end shows details. The first moment of
vorticity, and hence the combined strength of the vortex, is constant. No signs of the
low-frequency oscillations are apparent. The second and third moments show strong
time dependence and are nearly in phase. The fourth-order moment shows smaller
amplitudes that are also in phase with the second and third moments. The oscillations
begin prior to the merger of the vortices, subside during the merger, and resume after
the merger. No evidence of these oscillations is apparent in the first moment of the
p.d.f.

As remarked earlier for figure 13(b), all of the higher moments of the vorticity dis-
tribution show an abrupt decrease preceding the merger and remain low thereafter,
while the first moment remains constant. The implication is that the spatial distri-
bution of vorticity is shifting toward a uniform state. An alternative interpretation
is that the vorticity is being mixed and becoming more homogenized. During the
whole process, the centroid of the system continues as if it were a single vortex. Its
trajectory is unaltered, though the descent velocity slightly decreases. Similarly, the
kinetic energy in figure 14(d) shows no indications that a merger is occurring. The
inertia tensor in figure 14(e) shows a very large-amplitude cycle which subsides as the
merger is completed at tm ∼ 8 s.

Flow 23 in figure 8 shows the vortex interaction at moderate Reynolds numbers.
Its characteristics are shown in figure 15. The flow is an example of the merger of
two vortices of disparate size, where the stronger one overwhelms the dynamics of the
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Figure 14. Flow 16 vortex characteristics. (a) Vorticity probability density function p(ω, t). (b)
Moments of vorticity distribution 〈ωn(t)〉 (n = 1, 2, 3, 4). (c) Position Xc(t) and velocity U c(t) of
centroid of the vorticity distribution. (d) Kinetic energy K(t). (e) Vorticity distribution tensor Iij(t).

pair. The p.d.f. in figure 15(a) shows pronounced signatures of the vortex interaction.
Here again, the low end of the density function remains unchanged, while the high
end shows pronounced variations in time. The total circulation remains constant. No
clear signs of variation are apparent in the first moment of vorticity. The second
and the third moments, however, show strong variations which are in phase. These
oscillations seem to be briefly interrupted while the merger occurs at mid-point of
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Figure 15. Flow 23 vortex characteristics. (a) Vorticity probability density function p(ω, t). (b)
Moments of vorticity distribution 〈ωn(t)〉 (n = 1, 2, 3, 4). (c) Position Xc(t) and velocity U c(t) of
centroid of the vorticity distribution. (d) Kinetic energy K(t). (e) Vorticity distribution tensor Iij(t).

the data in figure 8. The isovors show a merger where the dominant vortex is hardly
altered while the weaker one is shredded into filaments. The kinetic energy history
does not suggest a dissipative event. The moment of inertia tensor Iij , on the other
hand, shows a high-amplitude cycle prior to merger and loses this feature after the
merger.

Figure 16 shows the characteristics of individual vortices of flow 16 in figures 7
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and 14. The vortices are identified as separate when a sufficiently wide region of
near-zero vorticity can be identified between them. The isovor segments are of the
same duration, though they appear to have different lengths due to the particular
perspective of their helices (cf. figure 7). The isovor of the tip vortex in (a) moves
on a compact orbit and remains intact. The isovor for the flap vortex in (d), which
is the weaker of the two, moves on a wider orbit, loses its circular shape, and splits
into filaments about half way across the figure. The first moments of vorticity in (b)
and (c) show that the vortices preserve their circulations before their merger. Their
higher moments, however, show features much like the complete vortex system in
figure 14(b). The oscillations of 〈ω(t)n〉 are much higher on the flap vortex, which is
splitting. Further, the oscillation changes abruptly on the tip vortex but smoothly on
the flap vortex during merger. As remarked earlier during the discussion of figures



Dynamics of corotating vortex pairs in the wakes of flapped airfoils 181

20

15 10

(a)

y (cm)
5

10

0
30

–5

0

Tip

Flap

3

4

5

6

7

x 
(c

m
)

5

10 5

(b)

(y–Yc) (cm)
0 –5

10
–10

Flap

5

6

7

Tip

4

3

(x
–

X
c
) 

(c
m

)
0

–5

–10
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vortex trajectories with Γf/Γt = 0.61 and separation of 8.6 cm. Numbers next to symbols indicate
time in seconds. Symbol size increases with time.

13(b) and 14(b), individual vortices show a decrease in the higher moments of their
vorticity distributions. This change is smaller for the stronger tip vortex than for
the weaker flap vortex. This indicates that the homogenization is more severe for
the weaker vortex than for the stronger one as observed on the isovors in figure 7.
Further, the frequency of oscillations of the higher vorticity moments is lower on the
individual vortices than on the pair in figure 14(b). This indicates that the vortices
are undergoing instabilities at different frequencies and that measurements of the
flow field of the pair show the combined signatures of the individual instabilities.
Evidently, the merger is a three-dimensional event, and catastrophic for the weaker
vortex. The centroid (c) and (f) data suggest cycloid paths which should be circular
orbits when observed from the reference system of the centre of vorticity of the vortex
pair. The tip vortex in figure 16(c) traces a sinuous trajectory, which is close to that
of the centre of vorticity of the pair shown in figure 14(c). The flap vortex, being
the weaker of the two, is hurled around the centre of vorticity of the joint system;
hence its trajectory is substantially different than that of the joint system or of the tip
vortex. The segment of its path captured in figure 14(c) corresponds to the part of its
cycloid which forms a closed loop, hence looks nearly stationary from the laboratory
reference frame.

Figure 17 shows the trajectories of the vortices of flow 16 in figure 14. Figure 17(a)
shows, in the laboratory reference frame, the trajectory of the centre of vorticity of
the pair shown in figure 14(c) and those of the individual vortices shown in figures



182 A. L. Chen, J. D. Jacob and Ö. Savaş

16(c) and 16(f). The common centre of vorticity descends uneventfully at a nearly
constant velocity. The trajectories of individual vortices show orbital motion around
the common centroid, which is reminiscent of cycloids. Near the wing, however, the tip
vortex rises above the wing plane as observed both in experiments and calculations.
The pair in figure 17 displays orbits much like the first cycle in the initial part of
those shown in figure 3 of Bilanin et al . (1977). For real vortices which are bound
at the wing, however, periodicity is not expected. In fact, the vortices merge by the
time the first cycle is complete. In figure 17(b), the orbits are drawn as observed from
X c(t). The symbols marking the centres of the vortices and the centre of the vortex
pair in figure 4(c) provide a snap shot of the orbits in the laboratory coordinate
system (t = 5 s in figure 16). The two concentric circles are the trajectories of two-
dimensional line vortices with a strength ratio of Γf/Γt = 0.61 and a separation of
(β/b)l = 8.6 cm (table 1). The vortices spiral into their common centre. The event is
three-dimensional. As the weaker vortex destabilizes and splits, it loses its coherence.
As seen in figure 14, part of the disintegrating vortex moves into the centre, while
part is thrown into the outer perimeter. This is a consequence of the invariants of
vortex motion.

5. Vortex merger
5.1. Merger mechanism

The evidence in the isovors in figures 6–8, the data analysis in figures 13–15, and
the detailed analysis in figures 16 and 17 show that the vortex merger is a three-
dimensional inviscid phenomenon. Instabilities develop prior to merger and continue
after it. During this interaction, the circulation of the vortex pair remains constant.
Their common centroid moves uninterrupted. The kinetic energy of the measurement
region shows no signs that a catastrophic event is taking place. The isovors show
deformed and split vorticity surfaces and filaments. The cross-sectional areas of these
filaments change in time, pointing to vortex stretching which is a three-dimensional
event. The strength of a vortex remains constant, while the higher moments of its vor-
ticity distribution show extreme fluctuations. Further, these moments decease during
the merger, an indication that the vorticity is tending toward a more homogeneous
distribution. No discernible signs of viscous effects are apparent. Based on these ob-
servations, we conclude that the vortex merger is a three-dimensional, inviscid event.

Figures 5–8 show that while no change is obvious in the behaviour of a single
vortex over long periods of time (figure 5), the dynamics of two vortices has intriguing
features (figures 6–8). One immediate observation is the onset of three-dimensionality,
which seems to be intrinsic to the merger process. The best visual indicator of this is
present on the isovors in figures 7 and 8. On high-vorticity isovors, vortex filaments
that split off from the secondary vortex terminate in the data domain. This is clear
evidence of vortex stretching (shrinking in this case) which can only take place in a
three-dimensional flow field. Flow visualization experiments with strips of baked dye
marking the boundary layers on the wing surfaces provided the first clues of these
details, even though no quantitative results could be deduced. This is due to loss of
traceability of the vorticity sheet when masked by the vorticity of the boundary layers
on the wing surfaces. Velocity fields or streamline patterns such as those shown in
figure 4 cannot yield these fine details, for they show integral behaviour of the flow
field. Thus, an explanation of the merger mechanism may perhaps be better at the
level of vorticity, a more primitive quantifier of the flow.
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As an initial analysis, a two-dimensional model of the merger can be made which
does not take into consideration vortex stretching. Consider the motion of two
corotating vortices which are separated by l. Assume that the weaker vortex, which
will experience higher straining, has a core size σ and is strained by the stronger
vortex Γs. The strain rate e imposed on the weaker vortex is e ∼ Γs/2πl2 and, hence,
the total extension rate ε of the vortex core is ε ∼ Γsσ/2πl

2. On the hypothesis that
the merger begins when the total extension of the weaker vortex is comparable to
their separation l, that is εtm ∼ l, the time to merger tm can be determined as

tm ∼ 2πl2

Γs

l

σ
. (5.1)

This estimate of the time to merger results in a value which is longer than the orbit
period of the pair by a factor of at least l/σ. The factor l/σ is a measure of the initial
vortex separation and implies that within this estimate, well separated vortices will
take many orbit times to merge, if merger occurs at all. Two-dimensional numerical
simulations indeed suggest this (Dritschel 1985, 1995).

Vortex merger occurs within one orbit time of the pair, and the result is catastrophic
for the weaker vortex. This consistent observation suggests that the vortex merger
is a three-dimensional event and cannot be explained by two-dimensional mechanics
alone. Clearly, the definition of the time to merger depends on the merger criterion
used. Visually, one can define an approximate time of merger as the point where
one can no longer clearly identify separate vortices, using animation of the raw
flow images and the vorticity field. This approach is subjective, yet unavoidable at
times. A preferred method is to use quantifiable measures to determine the point
of merger. For this purpose, the results in figures 12–15 are used. While several
quantities remain unchanged or show little indication of merger, an estimate of the
merger point (or the projected merger point) is made by collectively considering the
evidence from direct observations of the raw flow images and vorticity animations
along with the oscillations of the moments of the vorticity distribution, Iij(t). The
first clear indication of interaction of the vortices is in the higher moments of the
vorticity distribution. All high-order moments show oscillations that change their
behaviour before and after the merger. Flow 16 is a noteworthy example. The p.d.f.
moments in figure 14 exhibit persistent oscillations before any signs of interaction
between the vortices. These oscillations dampen almost instantaneously preceding the
visible signs of merger. After the merger is complete, the oscillations reappear. In this
particular case, the time at which the oscillations reappear coincides with the visually
identifiable merger point in figure 7. The vorticity distribution tensor Iij(t) provides
additional features in identifying the merger point. When two distinct vortices are
present, Ixx(t) and Iyy are out of phase. However, when the vortices merge, these
components become indistinguishable and seem to remain constant. The point of
transition from one trend to the other may be identified as the merger point. Another
key observation in identifying the point of merger is that when the merger occurs,
the core of the dominant vortex stops orbiting and resumes a straight descent. This
behaviour is visible in figures 6(c) and 8(a). In determining tm listed in table 1, isovors
similar to those in figures 6–8 are used as the primary source and corroborated results
from the Iij(t) and 〈ωn(t)〉 histories. Once the merger time is determined, the location
of the merger is determined from the Xc(t) curve in figures 13(c)–15(c). The descent
distances δm are also listed in table 1.

The dimensional merger time tm was plotted in figure 9 and was discussed in some
detail earlier. Motivated by observations that the merger occurs within one orbit time
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of the pair, tm is scaled with the orbital period τ of the vortex pair

τ =
4π2l2

Γ
, (5.2)

where the vortices are modelled as ideal line vortices, which are separated by a distance
l and have a combined circulation of Γ (Lamb 1932). The dimensionless merger time
tm/τ is plotted against the measured total circulation Reynolds number ReΓ = Γ/ν
in figure 18(a). The flows where the merger occurs after the data acquisition period
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are plotted as estimates based on the time taken for half an orbit. The figure confirms
that merger occurs within one orbit time. The average merger time is on the order
of τ,

tm = Cmτ, (5.3)

with Cm = 0.78 as determined from the data in figure 18(a). No systematic dependence
on Reynolds number is apparent. The flow studied by Vogel et al . (1996) is also shown
in figure 18(a). Their stated merger point is at (Γ/ν, tm/τ) = (42 000, 1.31), which is
determined from turbulence measurements. Observing the hydrogen bubble markers
indicated in their figure 2 at x/c = 16, a more comparable identification of the
merger point is at (Γ/ν, tm/τ) = (42 000, 0.94). Both estimates are shown in the figure.
In either case, this independent observation supports the conclusion of figure 18(a).
The curve fit implied in equation (5.3) is plotted as the two smooth curves in figure
9, where the appropriate values of l and Γ are used in the calculation of τ. The fitted
curves describe the behaviour of tm(Γ ) well. The deviation from the curves is due to
uncertainties in determining the merger point rather than the robustness of scaling.

Since the centre of vorticity of the pair is observed to be translating nearly uni-
formly even when the vortices are separate, the descent distance to merger δm may be
written as

δm = 〈Uc〉 tm, (5.4)

where 〈Uc〉 is determined from equation (4.6). Alternatively, δm can be determined
from X c(t) in equation (4.5) at t = tm as

δm = |X c(tm)|. (5.5)

The distance δm can also be written as

δm = Cm2π
l2

β
, (5.6)

where equation (5.4) is used with 〈Uc〉 = Γ/2πβ. Figure 18(b) shows δm determined
from equations (5.4) and (5.5) in the form suggested in equation (5.6). The constant
of proportionality Cm defined in equation (5.3) represents well the average value
of δm in part (b). As in part (a), no obvious dependence on the geometry or the
vortex strengths Γi exists. The implication of equation (5.6) for a particular wing-flap
geometry becomes clearer if δm is scaled with the wing span b

δm

b
= 2π

(
l

b

)2 (
b

β

)
. (5.7)

For a given airfoil geometry b/β is a constant of order one (4/π for an elliptically
loaded wing, Saffman 1992). Equation (5.7) states that the descent distance to merger
is a function of the wing geometry alone and is independent of the flow conditions
within the assumptions of the discussion herein.

Based on these observations, a simple, inviscid model of the vortex merger in the
wake of a lifting flapped wing can be proposed. The root circulation Γ of a wing of
span b may be approximated as

Γ = 1
2
clU∞A/β, (5.8)

where cl is the wing lift coefficient and A the area. The orbit time τ can be expressed
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in terms of cl as

τ =
8π2βl2

clA

1

U∞
. (5.9)

The orbit time and, hence, the merger time inversely depends on the lift coefficient. At
high lift configurations, such as take-offs and landings when the flaps are deployed,
the merger times are shorter. The downstream distance ∆m = U∞tm required for the
merger to occur can be expressed as

∆m

l
= Cm

4π2lU∞
Γ

(5.10)

which is rewritten as

∆m

l
=

8π2

cl

βl

A
. (5.11)

The data from table 1 are shown in figure 18(c). The solid line in the figure is
equation (5.10) which describes the data well. The flow studied by Vogel et al . (1995)
falls close to the correlation suggested in figure 18(c). Also shown in the figure is
one of the flows discussed by de Bruin et al . (1996). From their Plot 2, the flow
parameters are estimated as (Γ , l, U∞) = (14.5 m2 s−1, 0.37 m, 60 m s−1) and is marked
at Γ/lU∞ = 0.65 (ReΓ ≈ 106). In the estimation of Γ , the incremental rotation in Plot
2 and equation (5.2) are used. The vortex pair should merge at ∆m/l ≈ 48 (equation
(5.10)) or at about 14 wing spans, which is much farther than the distance covered in
their measurements.

5.2. Vortex stretching

The corotating vortices are initially distinct as the compact vorticity distributions in
figures 10 and 11 indicate. As they rotate around their common centroid, the weaker
vortex travels a greater distance and, thus, travels at a faster rate, which stretches the
vortex tube. This stretching can be seen in figure 13 as the p.d.f. shifts toward higher
vorticity values before merger occurs. The sudden increase in the higher moment
of p(ω, t) in figure 13(b) is evidence of this stretching. Since the p.d.f. only shifts
toward higher values of vorticity, little spreading or diffusion occurs in the vortices.
An estimate of the relative stretching of the vortices may be made based on idealized
helix lengths. Two vortices of strengths Γt and Γf at Rt and Rf from their common
centroid orbit around the centroid at a period of

τ =
4π2(Rt + Rf)

2

Γt + Γf
, (5.12)

where the ratio of the orbital radii is Rt/Rf = Γf/Γt. If these orbits are stretched into
the region behind the wing at the free-stream velocity U∞, then the helices have pitch
angles of

γt,f = tan−1

(
2πRt,f
τU∞

)
(5.13)

and lengths of

lt,f = τU∞
[
1 + (tan γt,f)

2
]1/2

. (5.14)
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The differential stretching ∆l = lt − lf is, in view of small helix angles,

∆l

τU∞
≈ 1

2
∆γ2, (5.15)

where ∆γ = γt − γf . The differential stretching implied in equation (5.15) is too small
to be the sole mechanism in the vortex merger. For example, γt,f ∼ 10−2 in figures 6
and 7. Hence, ∆l/τU∞ ∼ 10−4. This suggests that the three-dimensionality observed
in these flows is brought about by a combination of the filament stretching and the
development of vortex instabilities.

5.3. Structure of merging vortex pair

Figure 19 shows the streamline patterns at selected times for flow 16 in figure 7.
The frames in figure 7(a) are drawn in the laboratory reference system and those in
7(b) in a coordinate system attached to the centre of vorticity of the vortex pair and
rotating at the orbital angular velocity of 2π/τ. Note that the centre of vorticity of
the system is descending at the velocity calculated in equation (4.6). The streamlines
show nearly closed loops around the flap vortex. The outer streamlines spiral toward
the stronger tip vortex, suggesting entrainment of fluid into the vortex system. These
features are equally observable in the laboratory and the rotating reference system.
The signature of the flap vortex in the rotating coordinate system, however, becomes
less discernible. This is more clearly observable in the rotating reference frame at
time 0.6τ. At the merger time of 0.8τ, the signs of entrainment have nearly vanished.
The signature of the flap vortex continues to fade, though still identifiable even in
the rotating reference system. At 1.0τ the vortices have lost their individual identities.
In both reference systems, an elliptical streamline pattern has developed. No obvious
signs of entrainment are present. Only a slight anomaly in the ellipse exists.

Figure 20 shows the structure of the merged vortex pair at τ = 1.0 (t = 8 s) for
flow 16. The scatter in the velocity plot in figure 20(a) is narrower than the scatter
in either of the velocity plots for the tip and flap vortices in figures 11(a) and 11(d),
respectively. This is an indication that the merged vortices are now behaving as a
single vortex. The vorticity scatter plot in figure 20(b) still shows numerous bumps,
indicating the existence of patches of vorticity in the flow field scattered around the
perimeter. The circulation profile plot Γ (r) in figure 20(c) of the merged vortex pair
is showing noticeable differences from that of a Lamb–Oseen vortex (cf. figure 10c).
The merged vortex has σ = 0.18b while the tip and flap vortices had σ = 0.084b and
σ = 0.093b, respectively, as seen in figure 11.

As an example of a merged pair at a much later time, figure 21 shows the structure
at τ = 4 (t = 3.3 s) for flow 39 in table 1. The far field of the merged vortex seems
to have settled. However, both the velocity and the vorticity plots show that the core
of the vortex has asymmetries. The circulation plot in Γ (r) in figure 21(c) shows that
the Lamb–Oseen vortex fit is no longer as successful as it was earlier. This deviation
may be due to the long lasting effects of the merger process which may have initiated
structural changes.

5.4. Additional factors in merger

The vortex strength ratio Γf/Γt is an important factor in determining the details
of the merger. The data in table 1 show the extent of available vortex strength
ratios. These ratios are determined by isolating individual vortices in a plane using
comparable windows. The uncertainty in the Γf/Γt estimates is less than 10% and
typically 5%. The ratios in the flows range from 0.3 (flow 22) to 1.3 (flows 7, 31, and
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32), including a few near unity (flows 12, 13, and 24). When the vortices have different
strengths, the stronger one dominates the dynamics of the interaction. The weaker
one disintegrates around the stronger one. Merger is catastrophic and is complete
within one orbit time. When one of the vortices is much weaker that the other (for
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Figure 20. The structure of the merged vortex pair in flow 16 at τ = 1.0 (t = 8 s): (a) azimuthal
velocity uθ , (b) axial vorticity ω, and (c) circulation Γ as functions of the radial distance from the
centre of the vortex. The solid curve in (a) is uθ = Γ (r)/2πr where Γ (r) is from (c). The dotted curve
in (a) is uθ = Γo/2πr where Γo is the average of the last quarter of Γ (r) in (c). The solid curve in
(b) is ω(r) = (dΓ/dr)/2πr calculated from the curve in (c) after some smoothing. The dashed lines

in all figures correspond to a Lamb–Oseen vortex Γ (r) = Γo(1− e−r2/σ2
) with σ = 0.18b. Symbol •

marks the point of maximum uθ at r = 1.121σ (r = 0.20b).

example, Γf/Γt = 0.47, flow 23 in figure 8), the weaker vortex is split rapidly axially
and wrapped around the stronger vortex. The weaker vortex is torn into numerous
spiral filaments along a cylindrical shell. If the vortices are of comparable strengths,
the merger occurs more equitably. The stronger vortex maintains its integrity while the
weaker one splits radially. The severity of this disintegration increases with increasing
disparity. When the vortex strengths are nearly the same (flows 12, 13, and 24), their
interaction shows marked differences from the others. The merger takes longer to
complete. This is noticeable in figures 9 and 18. Also, the flow studied by Vogel et
al . (1995) with Γf/Γt = 1 shows a longer merger time. The interaction of the vortices
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Figure 21. As figure 20 but for flow 39 at τ = 4.0 (t = 3.3 s) with σ = 0.074b. Symbol • marks
the point of maximum uθ at r = 1.121σ (r = 0.082b).

basically takes place at the perimeter, where the vorticity is being homogenized. The
higher-order vorticity moments indicate (not shown here) that this homogenization
takes places gradually as opposed to the sudden onset observed in figure 14. Numerical
simulations of two-dimensional vortex patches show similar behaviour when they are
of equal strengths (Marcus 1990; Dritschel 1995). Further delineation of the effect of
the strength ratio requires rigorous stability analysis and is beyond the scope of this
paper.

Separation on the wing surface at high angles of attack directly affects the vortex
behaviour in the wake by changing the strength of the flap and tip vortices. It also has
an indirect effect on the vortices through the turbulence it creates in the wake of the
wing. This effect combined with the fossil turbulence should be examined, especially
when the turbulence intensity is high and the scales are right for an interaction.
The effects are known to be rather dramatic. A further complication comes from
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fluid stratification, which affects the behaviour strongly (Spalart 1998). A typical
real vortex pair in an application is likely to have all of these extraneous effects
present simultaneously. The present level of knowledge cannot predict the behaviour
of vortices in such an environment.

6. Summary
The interaction of corotating vortex pairs in the wakes of flapped airfoils is studied

experimentally at circulation Reynolds numbers ranging from 1.0× 104 to 6.4× 104.
The parameters governing the vortex interaction are the vortex strengths Γt and Γf ,
the vortex separation l, and to a lesser degree the vortex sizes σt and σf . The vortex
separation is determined by the flap geometry and only two values are available.
By changing both the angle of attack and the towing speed, the vortex strengths
are varied. The vortex sizes are less controllable. The distribution of vorticity off
the wing determines the size of the vortices. Once formed, the vortices show little
growth. A Lamb–Oseen vortex formulation is a good descriptor of single vortices,
both differentially at the vorticity distribution level, and integrally at the circulation
distribution level. For a pair of vortices, the Lamb–Oseen vortex remains a good
integral descriptor of the circulation distribution of each vortex.

A pair of corotating vortices merge in approximately 0.8 orbit times. This time scale
is insensitive to ReΓ or the relative strength ratio Γf/Γt of the vortices. The orbit
time also determines the scale of the events leading to merger of the vortices. For a
typical wing–flap geometry producing a vortex pair, the orbital behaviour results in a
merger distance that is much larger than the wing span. Since the vortex circulation,
and hence the orbit time, scales with lift on the wing, the merger location occurs
even farther downstream at low lift configurations. In the wake of a given wing, the
distance that the vortices descend before merging depends on the geometry alone and
is independent of the flow conditions. This observation, which is counter-intuitive,
is a consequence of the fact that both the descent velocity and the orbital angular
velocity scale with the circulation of the corotating vortex system. Hence, the descent
distance to merger depends on the geometry of the lifting wing and is independent
of the flow velocity and lift coefficient.

Measurements suggest that the merger mechanism is three-dimensional and inviscid.
No evidence of viscous diffusion acting over the separation distance between the
vortices is observed. Vortices are either wrapped around each other or shrink and
spread over large regions around the dominant filament. The events leading to
merger become discernible after about half of an orbit time. The first indication is
a filamentation of the vortices. The details depend strongly on the relative strengths
of the vortices. When the circulations of the vortices are comparable, both show
signs of a radial filament formation. The inner filaments merge directly with the
dominant vortex. The outer filaments shrink and spread their vorticity around the
core. When one vortex is weaker, the breakup into filaments begins earlier along
the axis. Leading filaments shrink, weakening vorticity, while trailing filaments merge
with the dominant vortex. Vortex stretching accompanies stretching of the filaments
prior to merger. If the smaller vortex is much weaker, it splits into many filaments.
One or a few strong filaments fuse directly with the dominant vortex, while the
remaining filaments are hurled into orbits at the fringes of the system. A decrease in
the higher-order moments of the vorticity distribution during merger indicates that
the merger tends to homogenize the vorticity distribution. The budgets for various
vortex invariants are calculated and found to remain unaffected by the merger.
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In view of the small helix angles when the vortices are orbiting around each
other, one is inclined to invoke arguments from two-dimensional vortex dynamics to
describe the behaviour of the pair. Two-dimensional vortex dynamics precludes vortex
stretching, and, thus, cannot account for the observations discussed here. The merger
of a corotating vortex pair within one orbit emphasizes that controlling the vortex
wake behaviour by inciting instabilities in a system of multiple vortices (Crouch 1997)
must be achieved within one orbit time, since excitation signatures may not survive
their merger.
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